44

radicals in the $3 \mu m$ region. By following the decay of this transient IR absorption, the rate coefficients for the combination and disproportionation reactions between *tert*-butyl radicals were deduced.

State-selective chemistry: the NCI radical

M.A.A. CLYNE and A.J. MACROBERT

Department of Chemistry, Queen Mary College, Mile End Road, London El 4NS (Gt. Britain)

The kinetics of the NCl radical were studied in a discharge flow system by molecular beam mass spectrometry. Ground X ${}^{3}\Sigma^{-}$ state and metastable excited a ¹ Δ and b ¹ Σ ⁺ state NCl radicals were generated via the reaction of excess chlorine atoms with chlorine azide (N₃Cl): $\tilde{C}l + N_3Cl \rightarrow N_3 + Cl_2$; $Cl + N_3 \rightarrow$ NCl* + N₂. The a ¹ Δ and b ¹ Σ ⁺ states of NCl were observed using the a ¹ Δ -X ³ Σ ⁻ (1.07 μ m) and b ${}^{1}\Sigma^{+}-X {}^{3}\Sigma^{-}$ (665 nm) transitions. On the addition of O₂, the excited NCl* radicals were quenched to the ground state. The formation of NCl₂ radicals was also observed in the $Cl + N_3Cl$ system. The addition of Cl_2 increased the NCl_2 concentration. However, the formation of NCl_2 could be completely suppressed by the addition of O_2 . It was deduced that the NCl₂ radicals were formed in the state-selective reaction of metastable excited state NCI* radicals with Cl₂: NCl* + Cl₂ \rightarrow NCl₂ + Cl; NCl(X ${}^{3}\Sigma^{-}$) + Cl₂ \approx NCl₂ + Cl. Thus the kinetics of ground state NCl could be studied in the absence of excited NCl* and NCl₂ by the addition of O₂. Rate constants for the reactions NCl + NCl \rightarrow N₂ + 2Cl and NCl + NO \rightarrow N₂O + Cl were determined, e.g. k^{295} (NCl + NO) = $(1.3 \pm 0.1) \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$.

Direct determination of the rate constants of elementary reactions of atomic phosphorus using high sensitivity resonance fluorescence detection

Y. O'CONNOR and M.A.A. CLYNE

Department of Chemistry, Queen Mary College, Mile End Road, London El 4NS (Gt. Britain)

The reactions of ground state phosphorus atoms $P(3 {}^{4}S_{3/2})$ with the molecules O_2 , Cl_2 , NO, NO₂ and PCl₃ were studied by using the vacuum UV atomic resonance fluorescence technique in a flow system. $P(3 {}^{4}S_{3/2})$ was generated by microwave discharge of PCl₃ in the presence of excess helium carrier gas and the atomic resonance fluorescence was monitored using the 178.77, 178.29 and